China wholesaler Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw vacuum pump engine

Product Description

Motor model YE3 series three-phase asynchronous motor
texture of material aluminum shell
Installation method B5
power 1HP-10HP
Applicable scope Three-phase asynchronous motor aluminum shell vertical can be applied to various mechanical equipment such as water pumps, lathes, oil pumps, mixers, etc.

Who are we?
HangZhou Su Lin Mechanical & Electrical Co., Ltd. is located in Xihu (West Lake) Dis. Industrial Park,  Daxi Town, HangZhou, ZHangZhoug province. Adjacent to Xihu (West Lake) Dis.wen high-speed G15, China National Highway 104, 18 km from the HangZhou Xihu (West Lake) Dis. Airport, 2 km from the railway station, the traffic is very convenient. Is a set design, production, sales, service integration of the new enterprise. Has many years of production YY series fan, JY, Ye2, YC, YL, YCL, YS Experience, has a perfect motor automatic computer testing line, Advanced Manufacturing, assembly line, specializing in the production of Dinyi brand series motor products. Products through the national compulsory product CCC certification, Export European Union CE safety certification

The company produces a complete range of motors, a variety of varieties, advanced design, well-chosen materials, advanced technology and unique, with excellent performance and the use of safe, reliable, durable and other advantages, products sell well throughout the country and exported to all world countries , customers at home and abroad to the praise. The company regards human resources as the basis of development of the enterprise,  attention to customer needs, customer service, to build the industry brand. With our strong human capital and continuous innovation, we can create a comfortable and quiet environment for maintaining the CHINAMFG health of human beings. The company adheres to the “quality first, customer first” principle to provide customers with quality service, welcome new and old customers to visit, guidance and business negotiations.

Power parameters

TYPE POWER(KW) SPEED(r/min) Rated Current(A) η(%) Power Factor cos Ist/In Tst/Tn Tmax/Tn
YE3-80M1-4 0.55 1390 1.57 71 0.75 5.2 2.4 2.3
YE3-80M2-4 0.75 1390 1.88 82.5 0.76 6 2.3 2.3
YE3-90S-4 1.1 1400 2.67 84.1 0.77 6 2.3 2.3
YE3-90L-4 1.5 1400 3.48 85.3 0.79 6 2.3 2.3
YE3-100L-4 2.2 1430 4.9 86.7 0.81 7 2.3 2.3
YE3-100L2-4 3 1430 6.5 87.7 0.82 7 2.3 2.3
YE3-112M-4 4 1440 8.56 88.6 0.82 7 2.3 2.3
YE3-132S-4 5.5 1440 11.5 89.6 0.83 7 2.3 2.3
YE3-132M-4 7.5 1440 15.3 90.4 0.84 7 2.3 2.3
YE3-80M1-2 0.75 2910 1.7 80.7 0.83 6.1 2.2 2.3
YE3-80M2-2 1.1 2910 2.4 82.7 0.84 7 2.2 2.3
YE3-90S-2 1.5 2910 3.2 84.2 0.84 7 2.2 2.3
YE3-90L-2 2.2 2910 4.73 85.9 0.85 7 2.2 2.3
YE3-100L-2 3 2910 6.19 87.1 0.87 7.5 2.2 2.3
YE3-112M-2 4 2915 8.05 88.1 0.88 7.5 2.2 2.3
YE3-132S1-2 5.5 2920 10.9 89.2 0.88 7.5 2.2 2.3
YE3-132S2-2 7.5 2920 14.7 90.1 0.88 7.5 2.2 2.3

Product Description

YE3 Three-phase Electric Motor are made of high-quality materials and conform to IEC standard. Which has good performance with low noise and little vibration. It is  safe and reliable in operation, and can be maintained very conveniently.

1.YE3 Series Aluminum Housing Three Phase Induction Motor adopts the latest design and high quality material and are conform to the IEC standard in function, appearance, output and other requirements.

2.The efficiency of YE3 motor meets IEC standard in E. U., and can reach the IE3 standard if requested. YE3 motor has a lot of advantages including high efficiency, energy saving, low noise, little vibration, light weight, small volume, reliable operation, up-to-date appearance, convenient operation and maintenance.

3.YE3 motor is died cast into mounding shape by aluminum-alloy. The base foot can be removable. Various mounting types are available for YE3 motor.

4.YE3 motor is suitable for common working environment and machinery without special requirement, like air-compressor, pump, fan, medical apparatus and instruments, small machines etc.

Installation dimensions

CE certification

Factory real shots

FAQ:
Q1. Do you accept OEM order?
Yes, OEM Brand aluminum electric motor asynchronous induction motor are acceptable.

Q2. What’s your payment terms?
We accept T/T(50% down payment and 50% paid before delivery), Pay pal, Western union, and Money Gram.

Q3. What’s the minimum order quantity? How long is the delivery time?
Both MOQ and delivery time need to refer to the specific products. Usuall we deliver the motors in 10-45 days, please
contact our sales for details.

Q4. What’s the way of transportation?
Express, air and CHINAMFG shipments are all available.

Q5. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
B. With more than 15 years experience in this filed, we have the ability to provide good service and products in low cost
C. Adequate inventory to make sure that our clients can obtain goods in a short period.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China wholesaler Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw   vacuum pump engine	China wholesaler Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw   vacuum pump engine
editor by CX 2024-03-05