Tag Archives: 3 phase motor

China supplier Small High Quality 3 Phase 220V 380V Gear Reducer Motor 2HP 1500W Power AC Reduction Motor with Great quality

Product Description

3 Phase AC Reducer Motor 1/2hp 220V 380V 400W Gear Precision Foot Mounted Reducer Motor

CV and CH series motor can be designed as Single phase and 3 phases type. And power range is from 0.1KW to 3.7KW. The motor can be mounted with brake, and brake type is No excitation type. Material of gears is advanced special alloy steel and all gears are carburizing hardening. This gear motor has been added with senior lubricants, and no needs to added lubricants again.

Helical gear reducer has the characteristics of strong versatility, good combination, and strong bearing capacity, and has the advantages of easy access to various transmission ratios, high efficiency, small vibration, and high allowable axial and radial loads.

This series of products can not only be used in combination with various reducers and vibrators to meet the requirements, but also has the advantage of localization of related transmission equipment.
 

Mostly used in metallurgy, sewage treatment,chemical, pharmaceutical and other industries.

 

Type CH series  three phase or single phase ac motors for industrial use 
Voltage 220VAC, 380VAC, 415VAC
Power range Power range is 0.1KW to 3.7KW
Output Speed Speed range is from 7rpm to 500rpm
Phase Single phase and 3phases for choice
Gears Special alloy steel and high precise gears
Grease Good grease and no need add grease during using
Cooling Full closed fan
USE This motor is widely used in
packing machine, textil machine
motor is widely used in mix 
machine,elevator, conveyor,etc.
OEM Service We offer OEM service.

  

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: Vertical Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Three-Step
Samples:
US$ 70/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

In which industries are gear motors commonly used, and what are their primary applications?

Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:

1. Robotics and Automation:

Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.

2. Automotive Industry:

The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.

3. Manufacturing and Machinery:

Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.

4. HVAC and Building Systems:

In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.

5. Marine and Offshore Industry:

Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.

6. Renewable Energy Systems:

The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.

7. Medical and Healthcare:

Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.

These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.

China supplier Small High Quality 3 Phase 220V 380V Gear Reducer Motor 2HP 1500W Power AC Reduction Motor   with Great quality China supplier Small High Quality 3 Phase 220V 380V Gear Reducer Motor 2HP 1500W Power AC Reduction Motor   with Great quality
editor by CX 2024-04-15

China wholesaler Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw vacuum pump engine

Product Description

Motor model YE3 series three-phase asynchronous motor
texture of material aluminum shell
Installation method B5
power 1HP-10HP
Applicable scope Three-phase asynchronous motor aluminum shell vertical can be applied to various mechanical equipment such as water pumps, lathes, oil pumps, mixers, etc.

Who are we?
HangZhou Su Lin Mechanical & Electrical Co., Ltd. is located in Xihu (West Lake) Dis. Industrial Park,  Daxi Town, HangZhou, ZHangZhoug province. Adjacent to Xihu (West Lake) Dis.wen high-speed G15, China National Highway 104, 18 km from the HangZhou Xihu (West Lake) Dis. Airport, 2 km from the railway station, the traffic is very convenient. Is a set design, production, sales, service integration of the new enterprise. Has many years of production YY series fan, JY, Ye2, YC, YL, YCL, YS Experience, has a perfect motor automatic computer testing line, Advanced Manufacturing, assembly line, specializing in the production of Dinyi brand series motor products. Products through the national compulsory product CCC certification, Export European Union CE safety certification

The company produces a complete range of motors, a variety of varieties, advanced design, well-chosen materials, advanced technology and unique, with excellent performance and the use of safe, reliable, durable and other advantages, products sell well throughout the country and exported to all world countries , customers at home and abroad to the praise. The company regards human resources as the basis of development of the enterprise,  attention to customer needs, customer service, to build the industry brand. With our strong human capital and continuous innovation, we can create a comfortable and quiet environment for maintaining the CHINAMFG health of human beings. The company adheres to the “quality first, customer first” principle to provide customers with quality service, welcome new and old customers to visit, guidance and business negotiations.

Power parameters

TYPE POWER(KW) SPEED(r/min) Rated Current(A) η(%) Power Factor cos Ist/In Tst/Tn Tmax/Tn
YE3-80M1-4 0.55 1390 1.57 71 0.75 5.2 2.4 2.3
YE3-80M2-4 0.75 1390 1.88 82.5 0.76 6 2.3 2.3
YE3-90S-4 1.1 1400 2.67 84.1 0.77 6 2.3 2.3
YE3-90L-4 1.5 1400 3.48 85.3 0.79 6 2.3 2.3
YE3-100L-4 2.2 1430 4.9 86.7 0.81 7 2.3 2.3
YE3-100L2-4 3 1430 6.5 87.7 0.82 7 2.3 2.3
YE3-112M-4 4 1440 8.56 88.6 0.82 7 2.3 2.3
YE3-132S-4 5.5 1440 11.5 89.6 0.83 7 2.3 2.3
YE3-132M-4 7.5 1440 15.3 90.4 0.84 7 2.3 2.3
YE3-80M1-2 0.75 2910 1.7 80.7 0.83 6.1 2.2 2.3
YE3-80M2-2 1.1 2910 2.4 82.7 0.84 7 2.2 2.3
YE3-90S-2 1.5 2910 3.2 84.2 0.84 7 2.2 2.3
YE3-90L-2 2.2 2910 4.73 85.9 0.85 7 2.2 2.3
YE3-100L-2 3 2910 6.19 87.1 0.87 7.5 2.2 2.3
YE3-112M-2 4 2915 8.05 88.1 0.88 7.5 2.2 2.3
YE3-132S1-2 5.5 2920 10.9 89.2 0.88 7.5 2.2 2.3
YE3-132S2-2 7.5 2920 14.7 90.1 0.88 7.5 2.2 2.3

Product Description

YE3 Three-phase Electric Motor are made of high-quality materials and conform to IEC standard. Which has good performance with low noise and little vibration. It is  safe and reliable in operation, and can be maintained very conveniently.

1.YE3 Series Aluminum Housing Three Phase Induction Motor adopts the latest design and high quality material and are conform to the IEC standard in function, appearance, output and other requirements.

2.The efficiency of YE3 motor meets IEC standard in E. U., and can reach the IE3 standard if requested. YE3 motor has a lot of advantages including high efficiency, energy saving, low noise, little vibration, light weight, small volume, reliable operation, up-to-date appearance, convenient operation and maintenance.

3.YE3 motor is died cast into mounding shape by aluminum-alloy. The base foot can be removable. Various mounting types are available for YE3 motor.

4.YE3 motor is suitable for common working environment and machinery without special requirement, like air-compressor, pump, fan, medical apparatus and instruments, small machines etc.

Installation dimensions

CE certification

Factory real shots

FAQ:
Q1. Do you accept OEM order?
Yes, OEM Brand aluminum electric motor asynchronous induction motor are acceptable.

Q2. What’s your payment terms?
We accept T/T(50% down payment and 50% paid before delivery), Pay pal, Western union, and Money Gram.

Q3. What’s the minimum order quantity? How long is the delivery time?
Both MOQ and delivery time need to refer to the specific products. Usuall we deliver the motors in 10-45 days, please
contact our sales for details.

Q4. What’s the way of transportation?
Express, air and CHINAMFG shipments are all available.

Q5. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
B. With more than 15 years experience in this filed, we have the ability to provide good service and products in low cost
C. Adequate inventory to make sure that our clients can obtain goods in a short period.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China wholesaler Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw   vacuum pump engine	China wholesaler Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw   vacuum pump engine
editor by CX 2024-03-05

China supplier 3 Phase Squirrel Cage Induction Electrical AC Gear Motor vacuum pump

Product Description

3 Phase Squirrel Cage Induction Electrical AC Gear Motor

 

Product Description

 

Detailed Photos

 

 

Installation Instructions

 

 

Product Parameters

 

PERFORMANCE DATA
Type Output (KW)   Full Load Noise dB(A) Vibration(mm/s) LRT BDT LRA
HP Current (A) Speed (r/min) Eff. (%) P.F.(COS∅) RLT RLT RLA
Synchronous Speed 3000r/min(2P)
ZB2-63M1-2 0.18 0.25 0.64  2800 52.8  0.81  61 1.8 2.4 2.4 6.0 
ZB2-63M2-2 0.25 0.35 0.81  2800 58.2  0.81  61 1.8 2.4 2.4 6.0 
ZB2-71M1-2 0.37 0.5 1.09  2800 63.9  0.81  64 1.8 2.4 2.4 6.7 
ZB2-71M2-2 0.55 0.75 1.48  2800 69.0  0.82  64 1.8 2.4 2.5 6.7 
ZB2-80M1-2 0.75 1 1.90  2825 72.1  0.83  67 1.8 2.4 2.5 6.7 
ZB2-80M2-2 1.1 1.5 2.65  2825 75.0  0.84  67 1.8 2.4 2.5 7.7 
ZB2-90S-2 1.5 2 3.51  2840 77.2  0.84  72 1.8 2.4 2.5 7.7 
ZB2-90L-2 2.2 3 4.93  2840 79.7  0.85  72 1.8 2.4 2.5 7.7 
ZB2-100L-2 3 4 6.4  2880 81.5  0.87  76 1.8 2.4 2.5 8.3 
ZB2-112M-2 4 5.5 8.3  2890 83.1  0.88  77 1.8 2.4 2.5 8.3 
ZB2-132S1-2 5.5 7.5 11.2  2900 84.7  0.88  80 1.8 2.4 2.5 8.3 
ZB2-132S2-2 7.5 10 15.1  2900 86.0  0.88  80 1.8 2.4 2.5 8.3 
ZB2-160M1-2 11 15 21.4  2930 87.6  0.89  86 2.8 2.4 2.5 8.3 
ZB2-160M2-2 15 20 28.9  2930 88.7  0.89  86 2.8 2.4 2.5 8.3 
ZB2-160L-2 18.5 25 35.0  2930 89.3  0.90  86 2.8 2.4 2.5 8.3 
ZB2-180M-2 22 30 41.3  2940 89.9  0.90  89 2.8 2.2 2.5 8.3 
ZB2-200L1-2 30 40 55.8  2950 90.7  0.90  92 2.8 2.2 2.5 8.3 
ZB2-200L2-2 37 50 68.5  2950 91.2  0.90  92 2.8 2.2 2.5 8.3 
ZB2-225M-2 45 60 82.8  2970 91.7  0.90  92 2.8 2.2 2.5 8.3 
ZB2-250M-2 55 75 101  2970 92.1  0.90  93 3.5 2.2 2.5 8.3 
ZB2-280S-2 75 100 137  2970 92.7  0.90  94 3.5 2.2 2.5 8.3 
ZB2-280M-2 90 125 162  2970 93.0  0.91  94 3.5 2.2 2.5 8.3 
ZB2-315S-2 110 150 197  2980 93.3  0.91  96 3.5 2.0  2.4 7.8 
ZB2-315M-2 132 180 236  2980 93.5  0.91  96 3.5 2.0  2.4 7.8 
ZB2-315L1-2 160 220 282  2980 93.8  0.92  99 3.5 2.0  2.4 7.8 
ZB2-315L2-2 200 270 351  2980 94.0  0.92  99 3.5 2.0  2.4 7.8 
ZB2-355M1-2 220 300 387  2980 94.0  0.92  103 3.5 2.0  2.4 7.8 
ZB2-355M2-2 250 340 439  2980 94.0  0.92  103 3.5 1.8  2.4 7.8 
ZB2-355L1-2 280 380 492  2980 94.0  0.92  103 3.5 1.8  2.4 7.8 
ZB2-355L2-2 315 430 553  2980 94.0  0.92  103 3.5 1.8  2.4 7.8 
                       
                       
PERFORMANCE DATA
Type Output (KW)   Full Load Noise dB(A) Vibration(mm/s) LRT BDT LRA
HP Current (A) Speed (r/min) Eff. (%) P.F.(COS∅) RLT RLT RLA
 Synchronous Speed 1500r/min(4P)
ZB2-63M1-4 0.12 0.18 0.51  1400 50.0  0.72  52 1.8 2.3 2.4 4.8 
ZB2-63M2-4 0.18 0.25 0.66  1400 57.0  0.73  52 1.8 2.3 2.4 4.8 
ZB2-71M1-4 0.25 0.35 0.83  1400 61.5  0.74  55 1.8 2.3 2.4 5.7 
ZB2-71M2-4 0.37 0.5 1.14  1400 66.0  0.75  55 1.8 2.3 2.4 5.7 
ZB2-80M1-4 0.55 0.75 1.59  1390 70.0  0.75  58 1.8 2.5 2.5 5.7 
ZB2-80M2-4 0.75 1 2.08  1390 72.1  0.76  58 1.8 2.5 2.5 6.6 
ZB2-90S-4 1.1 1.5 2.89  1400 75.0  0.77  61 1.8 2.5 2.5 6.6 
ZB2-90L-4 1.5 2 3.74  1400 77.2  0.79  61 1.8 2.5 2.5 6.6 
ZB2-100L1-4 2.2 3 5.2  1420 79.7  0.81  64 1.8 2.5 2.5 7.7 
ZB2-100L2-4 3 4 6.8  1420 81.5  0.82  64 1.8 2.5 2.5 7.7 
ZB2-112M-4 4 5.5 8.9  1440 83.1  0.82  65 1.8 2.5 2.5 7.7 
ZB2-132S-4 5.5 7.5 11.9  1440 84.7  0.83  71 1.8 2.5 2.5 7.7 
ZB2-132M-4 7.5 10 15.8  1440 86.0  0.84  71 1.8 2.5 2.5 7.7 
ZB2-160M-4 11 15 22.7  1460 87.6  0.84  75 2.8 2.4 2.5 7.7 
ZB2-160L-4 15 20 30.2  1460 88.7  0.85  75 2.8 2.4 2.5 8.3 
ZB2-180M-4 18.5 25 36.6  1470 89.3  0.86  76 2.8 2.4 2.5 8.3 
ZB2-180L-4 22 30 43.2  1470 89.9  0.86  76 2.8 2.4 2.5 8.3 
ZB2-200L-4 30 40 58.4  1480 90.7  0.86  79 2.8 2.4 2.5 7.9 
ZB2-225S-4 37 50 70.9  1480 91.2  0.87  91 2.8 2.4 2.5 7.9 
ZB2-225M-4 45 60 86  1480 91.7  0.87  91 2.8 2.4 2.5 7.9 
ZB2-250M-4 55 75 104  1480 92.1  0.87  83 3.5 2.4 2.5 7.9 
ZB2-280S-4 75 100 141  1480 92.7  0.87  86 3.5 2.4 2.5 7.9 
ZB2-280M-4 90 125 169  1485 93.0  0.87  86 3.5 2.4  2.5 7.9 
ZB2-315S-4 110 150 204  1485 93.3  0.88  93 3.5 2.3  2.4 7.6 
ZB2-315M-4 132 180 244  1485 93.5  0.88  93 3.5 2.3  2.4 7.6 
ZB2-315L1-4 160 220 291  1485 93.8  0.89  97 3.5 2.3  2.4 7.6 
ZB2-315L2-4 200 270 363  1485 94.0  0.89  97 3.5 2.3  2.4 7.6 
ZB2-355M1-4 220 300 400  1490 94.0  0.89  101 3.5 2.3  2.4 7.6 
ZB2-355M2-4 250 340 449  1490 94.0  0.90  101 3.5 2.3  2.4 7.6 
ZB2-355L1-4 280 380 503  1490 94.0  0.90  101 3.5 2.3  2.4 7.6 
ZB2-355L2-4 315 430 565.73  1490 94.0  0.90  101 3.5 2.3 2.4 7.6 
                       
                       
PERFORMANCE DATA
Type Output (KW)   Full Load Noise dB(A) Vibration(mm/s) LRT BDT LRA
HP Current (A) Speed (r/min) Eff. (%) P.F.(COS∅) RLT RLT RLA
Synchronous Speed 1000r/min(6P)
ZB2-71M1-6 0.18 0.25 0.91  900 45.5  0.66  52 1.8 2.1 2.2 4.4 
ZB2-71M2-6 0.25 0.35 1.07  900 52.1  0.68  52 1.8 2.1 2.2 4.4 
ZB2-80M1-6 0.37 0.5 1.35  900 59.7  0.70  54 1.8 2.1 2.2 5.2 
ZB2-80M2-6 0.55 0.75 1.76  900 65.8  0.72  54 1.8 2.1 2.3 5.2 
ZB2-90S-6 0.75 1 2.26  910 70.0  0.72  57 1.8 2.2 2.3 6.0 
ZB2-90L-6 1.1 1.5 3.14  910 72.9  0.73  57 1.8 2.2 2.3 6.0 
ZB2-100L-6 1.5 2 4.04  940 75.2  0.75  61 1.8 2.2 2.3 6.0 
ZB2-112M-6 2.2 3 5.66  940 77.7  0.76  65 1.8 2.2 2.3 7.2 
ZB2-132S-6 3 4 7.5  960 79.7  0.76  69 1.8 2.2 2.3 7.2 
ZB2-132M1-6 4 5.5 9.8  960 81.4  0.76  69 1.8 2.2 2.3 7.2 
ZB2-132M2-6 5.5 7.5 13.1  960 83.1  0.77  69 1.8 2.2 2.3 7.2 
ZB2-160M-6 7.5 10 17.5  970 84.7  0.77  73 2.8 2.2 2.3 7.2 
ZB2-160L-6 11 15 24.8  970 86.4  0.78  73 2.8 2.2 2.3 7.2 
ZB2-180L-6 15 20 32.1  970 87.7  0.81  73 2.8 2.2 2.3 7.7 
ZB2-200L1-6 18.5 25 39.2  970 88.6  0.81  76 2.8 2.2 2.3 7.7 
ZB2-200L2-6 22 30 45.1  970 89.2  0.83  76 2.8 2.2 2.3 7.7 
ZB2-225M-6 30 40 60.9  980 90.2  0.83  76 2.8 2.2 2.3 7.7 
ZB2-250M-6 37 50 73.7  980 90.8  0.84  78 3.5 2.2 2.3 7.7 
ZB2-280S-6 45 60 87.0  980 91.4  0.86  80 3.5 2.2 2.2 7.7 
ZB2-280M-6 55 75 106  980 91.9  0.86  80 3.5 2.2 2.2 7.7 
ZB2-315S-6 75 100 143  980 92.6  0.86  85 3.5 2.2 2.2 7.7 
ZB2-315M-6 90 125 171  935 92.9  0.86  85 3.5 2.2 2.2 7.7 
ZB2-315L1-6 110 150 208  935 93.3  0.86  85 3.5 2.2  2.2 7.4 
ZB2-315L2-6 132 180 247  935 93.5  0.87  85 3.5 2.2  2.2 7.4 
ZB2-355M1-6 160 220 295  990 93.8  0.88  92 3.5 2.1  2.2 7.4 
ZB2-355M2-6 200 270 367  990 94.0  0.88  92 3.5 2.1  2.2 7.4 
ZB2-355L1-6 220 300 404  990 94.0  0.88  92 3.5 2.1  2.2 7.4 
ZB2-355L2-6 250 340 459  990 94.0  0.88  92 3.5 2.1  2.2 7.4 
                       
                       
PERFORMANCE DATA
Type Output (KW)   Full Load Noise dB(A) Vibration(mm/s) LRT BDT LRA
HP Current (A) Speed (r/min) Eff. (%) P.F.(COS∅) RLT RLT RLA
Synchronous Speed 750r/min(8P)
ZB2-80M1-8 0.18 0.25 1.18  900 38.0  0.61  52 1.8 2 2.1 3.6 
ZB2-80M2-8 0.25 0.35 1.43  690 43.4  0.61  52 1.8 2 2.1 3.6 
ZB2-90S-8 0.37 0.5 1.85  690 49.7  0.61  56 1.8 2 2.1 4.4 
ZB2-90L-8 0.55 0.75 2.44  690 56.1  0.61  56 1.8 2 2.2 4.4 
ZB2-100L1-8 0.75 1 2.78  700 61.2  0.67  59 1.8 2 2.2 4.4 
ZB2-100L2-8 1.1 1.5 3.64  700 66.5  0.69  59 1.8 2 2.2 5.5 
ZB2-112M-8 1.5 2 4.71  700 70.2  0.69  61 1.8 2 2.2 5.5 
ZB2-132S-8 2.2 3 6.34  710 74.2  0.71  64 1.8 2 2.2 6.6 
ZB2-132M-8 3 4 8.1  710 77.0  0.73  64 1.8 2 2.2 6.6 
ZB2-160M1-8 4 5.5 10.5  720 79.2  0.73  68 2.8 2 2.2 6.6 
ZB2-160M2-8 5.5 7.5 13.9  720 81.4  0.74  68 2.8 2.2 2.2 6.6 
ZB2-160L-8 7.5 10 18.3  720 83.1  0.75  68 2.8 2.2 2.2 6.6 
ZB2-180L-8 11 15 25.9  730 85.0  0.76  70 2.8 2.2 2.2 7.3 
ZB2-200L-8 15 20 34.8  730 86.2  0.76  73 2.8 2.2 2.2 7.3 
ZB2-225S-8 18.5 25 42.6  730 86.9  0.76  73 2.8 2.1 2.2 7.3 
ZB2-225M-8 22 30 49.0  730 87.4  0.78  73 2.8 2.1 2.2 7.3 
ZB2-250M-8 30 40 65.3  730 88.3  0.79  75 3.5 2.1 2.2 7.3 
ZB2-280S-8 37 50 80.1  730 88.8  0.79  76 3.5 2.1 2.2 7.3 
ZB2-280M-8 45 60 97.0  740 89.2  0.79  76 3.5 2.1 2.2 7.3 
ZB2-315S-8 55 75 115  740 89.7  0.81  82 3.5 2 2.2 7.3 
ZB2-315M-8 75 100 156  740 90.3  0.81  82 3.5 2 2.2 7.3 
ZB2-315L1-8 90 125 184  740 90.7  0.82  82 3.5 2 2.2 7.3 
ZB2-315L2-8 110 150 224  740 91.1  0.82  82 3.5 2.0  2.2 7.0 
ZB2-355M1-8 132 180 267  740 91.5  0.82  90 3.5 2.0  2.2 7.0 
ZB2-355M2-8 160 220 323  740 91.9  0.82  90 3.5 2.0  2.2 7.0 
ZB2-355L1-8 185 250 371  740 92.3  0.82  90 3.5 2.0  2.2 7.0 
ZB2-355L2-8 200 270 396  740 92.5  0.83  90 3.5 2.0  2.2 7.0 
                       
                       
PERFORMANCE DATA
Type Output (KW)   Full Load Noise dB(A) Vibration(mm/s) LRT BDT LRA
HP Current (A) Speed (r/min) Eff. (%) P.F.(COS∅) RLT RLT RLA
Synchronous Speed 600r/min(10P)
ZB2-315S-10 45 60 99.63  590 91.5  0.75  82 3.5 1.7 2.2 6.8 
ZB2-315M-10 55 75 121.11  590 92.0  0.75  82 3.5 1.7 2.2 6.8 
ZB2-315L1-10 75 100 162.10  590 92.5  0.76  82 3.5 1.7 2.2 6.8 
ZB2-315L2-10 90 125 190.96  590 93.0  0.77  82 3.5 1.7 2.2 6.8 
ZB2-355M1-10 110 150 229.91  590 93.2  0.78  90 3.5 1.7 2.2 6.6 
ZB2-355M2-10 132 180 275.00  590 93.5  0.78  90 3.5 1.5 2.2 6.6 
ZB2-355L1-10 160 220 333.34  590 93.5  0.78  90 3.5 1.5 2.2 6.6 
ZB2-355L2-10 185 250 385.42  590 93.5  0.78  90 3.5 1.5 2.2 6.6 

 

 

 

 

FAQ

Q: Are you trading company or manufacturer?
A: We are manufacturer.

Q: What is the payment terms?
A: 30% T/T in advance, 70% before shipment  or L/C at sight. 

Q: What is your delivery time?
A: standard product 20 days after receiving your L/C or T/T deposit.

Q: What is the MOQ of this item?
A: 1 units for small/medium size motors, unlimited for large ones.

Q: How long is your warranty?
A: 12 months after receiving B/L.

Q: Can we used our own brand on motors ?
A: Yes, OEM and ODM also to be provided. /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Three-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China supplier 3 Phase Squirrel Cage Induction Electrical AC Gear Motor   vacuum pump	China supplier 3 Phase Squirrel Cage Induction Electrical AC Gear Motor   vacuum pump
editor by CX 2024-02-17

China factory Ye3 50/60Hz Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw wholesaler

Product Description

YE3 SERIES

Motor model YE3 series three-phase asynchronous motor
texture of material  Iron shell
Installation method horizontal 
power 1HP-10HP
Applicable scope Three-phase asynchronous motor B5 front cover can be applied to various mechanical equipment such as vacuum pumps, food packaging equipment, machine tools, hydraulic machines, etc.

Factory Scenery

Who are we?
HangZhou Su Lin Mechanical & Electrical Co., Ltd. is located in Xihu (West Lake) Dis. Industrial Park,  Daxi Town, HangZhou, ZHangZhoug province. Adjacent to Xihu (West Lake) Dis.wen high-speed G15, China National Highway 104, 18 km from the HangZhou Xihu (West Lake) Dis. Airport, 2 km from the railway station, the traffic is very convenient. Is a set design, production, sales, service integration of the new enterprise. Has many years of production YY series fan, JY, Ye2, YC, YL, YCL, YS Experience, has a perfect motor automatic computer testing line, Advanced Manufacturing, assembly line, specializing in the production of Dinyi brand series motor products. Products through the national compulsory product CCC certification, Export European Union CE safety certification

The company produces a complete range of motors, a variety of varieties, advanced design, well-chosen materials, advanced technology and unique, with excellent performance and the use of safe, reliable, durable and other advantages, products sell well throughout the country and exported to all world countries , customers at home and abroad to the praise. The company regards human resources as the basis of development of the enterprise,  attention to customer needs, customer service, to build the industry brand. With our strong human capital and continuous innovation, we can create a comfortable and quiet environment for maintaining the CHINAMFG health of human beings. The company adheres to the “quality first, customer first” principle to provide customers with quality service, welcome new and old customers to visit, guidance and business negotiations.

Power parameters

TYPE POWER(KW) SPEED(r/min) Rated Current(A) η(%) Power Factor cos Ist/In Tst/Tn Tmax/Tn
YE3-80M1-4 0.55 1390 1.57 71 0.75 5.2 2.4 2.3
YE3-80M2-4 0.75 1390 1.88 82.5 0.76 6 2.3 2.3
YE3-90S-4 1.1 1400 2.67 84.1 0.77 6 2.3 2.3
YE3-90L-4 1.5 1400 3.48 85.3 0.79 6 2.3 2.3
YE3-100L-4 2.2 1430 4.9 86.7 0.81 7 2.3 2.3
YE3-100L2-4 3 1430 6.5 87.7 0.82 7 2.3 2.3
YE3-112M-4 4 1440 8.56 88.6 0.82 7 2.3 2.3
YE3-132S-4 5.5 1440 11.5 89.6 0.83 7 2.3 2.3
YE3-132M-4 7.5 1440 15.3 90.4 0.84 7 2.3 2.3
YE3-80M1-2 0.75 2910 1.7 80.7 0.83 6.1 2.2 2.3
YE3-80M2-2 1.1 2910 2.4 82.7 0.84 7 2.2 2.3
YE3-90S-2 1.5 2910 3.2 84.2 0.84 7 2.2 2.3
YE3-90L-2 2.2 2910 4.73 85.9 0.85 7 2.2 2.3
YE3-100L-2 3 2910 6.19 87.1 0.87 7.5 2.2 2.3
YE3-112M-2 4 2915 8.05 88.1 0.88 7.5 2.2 2.3
YE3-132S1-2 5.5 2920 10.9 89.2 0.88 7.5 2.2 2.3
YE3-132S2-2 7.5 2920 14.7 90.1 0.88 7.5 2.2 2.3

Product Description

YE3 Three-phase Electric Motor are made of high-quality materials and conform to IEC standard. Which has good performance with low noise and little vibration. It is  safe and reliable in operation, and can be maintained very conveniently.

1.YE3 Series Aluminum Housing Three Phase Induction Motor adopts the latest design and high quality material and are conform to the IEC standard in function, appearance, output and other requirements.

2.The efficiency of YE3 motor meets IEC standard in E. U., and can reach the IE3 standard if requested. YE3 motor has a lot of advantages including high efficiency, energy saving, low noise, little vibration, light weight, small volume, reliable operation, up-to-date appearance, convenient operation and maintenance.

3.YE3 motor is died cast into mounding shape by aluminum-alloy. The base foot can be removable. Various mounting types are available for YE3 motor.

4.YE3 motor is suitable for common working environment and machinery without special requirement, like air-compressor, pump, fan, medical apparatus and instruments, small machines etc.

Factory real shots

FAQ:
Q1. Do you accept OEM order?
Yes, OEM Brand aluminum electric motor asynchronous induction motor are acceptable.

Q2. What’s your payment terms?
We accept T/T(50% down payment and 50% paid before delivery), Pay pal, Western union, and Money Gram.

Q3. What’s the minimum order quantity? How long is the delivery time?
Both MOQ and delivery time need to refer to the specific products. Usuall we deliver the motors in 10-45 days, please
contact our sales for details.

Q4. What’s the way of transportation?
Express, air and CHINAMFG shipments are all available.

Q5. Do you test all your goods before delivery?
A: Yes, we have 100% test before delivery
B. With more than 15 years experience in this filed, we have the ability to provide good service and products in low cost
C. Adequate inventory to make sure that our clients can obtain goods in a short period.

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Operating Speed: Constant Speed
Number of Stator: Three-Phase
Samples:
US$ 50/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

What is the significance of gear reduction in gear motors, and how does it affect efficiency?

Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

Significance of Gear Reduction:

1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

Effect on Efficiency:

While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China factory Ye3 50/60Hz Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw   wholesaler China factory Ye3 50/60Hz Cast Iron Geared Motor AC Motor Electric Motor 10 HP 3 Phase 7.5 Kw   wholesaler
editor by CX 2024-02-12