Tag Archives: motor fan

China best 6rk180rgucf-6gu30kg15L AC Reversible Gear Motor 104mm 180W Speed Control with Fan Ratio 30 vacuum pump

Product Description

TaiBang Motor Industrial Group Co., Ltd.
  The main products is induction  motor, reversible motor, DC brush gear  motor, DC brushless gear motor , CH/CV big gear motors , Planetary gear motor ,Worm gear motor etc, which used widely in various fields of manufacturing pipelining, transportation, food, medicine, printing, fabric, packing, office, apparatus, entertainment etc, and is the preferred and matched product for automatic machine. 

200W 104mm Constant Speed AC gear motor

Specification of motor 200W 104mm Fixed speed AC gear motor
TYPE  Gear tooth Output Shaft Power
(W)
Frequency
(Hz)
Voltage
(V)
Current
(A)
Start Torque
(g.cm)
Rated Start Gearbox type
Torque
(g.cm)
Speed
(rpm)
Capacity
(μF)
Resistance Voltage
(V)
Bearing gearbox Middle Gearbox
Reversible Motor 6RK200A-CF 200 50 220 1.90 14050  15000 1300 14 500 6GN/GU- K 6GN10X
200 60 220 1.75 11750 12580  1550  12  500 6GN/GU- K 6GN10X

Drawing: 6RK200A-CF/6GN3~180K (The gearbox shell 65mm)

Gearbox torque table(Kg.cm)                     (kg.cm×9.8÷100)=N.m
Output speed :RPM 500 300 200 150 120 100 75 60 50 30 20 15 10 7.5 6 5 3
Speed ratio 50Hz 3 3 7.5 10 12.5 15 20 25 30 50 75 100 150 200 250 300 500
60Hz 3.6 6 9   15 18   30 36 60 90 120 180   300 360 600
Allowed
torque
40W kg.cm 14 23 35 46 58 69 92 110 133 150 150 150 150 150 150 150 150
70W kg.cm 11 18 27 35.5 45 92 123 147 177 295 450 450 450 450 450 450 450
120W kg.cm 18.7 30.7 46 61 77 92 123 147 177 295 450 450 450 450 450 450 450
140W kg.cm 22 36 53.3 71 90 107 143.5 171.5 206 340 450 450 450 450 450 450 450
180W kg.cm 28 46 70 93 116 138 184 220 266 450 450 450 450 450 450 450 450
200W kg.cm 32 51 78 103 129 153 205 245 296 450 450 450 450 450 450 450 450
Note: Speed figures are based on synchronous speed, The actual output speed, under rated torque conditions, is about 10-20% less than synchronous speed, a grey background indicates output shaft of geared motor rotates in the same direction as output shaft of motor. A white background indicates rotates rotation in the opposite direction.

Drawing is for standard screw hole, If need through hole, terminal box, or electronic magnet brake, need to tell the seller.

Basic tech data: Retail price:
Motor type: AC gear motor           Insulation Class: E
Motor material: Aluminum , Copper, Steel IP grade:IP44
Rotation: CW/CCW reversible Working style:S1
Frequency: 50Hz/60Hz Operating temperature range: -10 °C~ Operating relative humidity: 95% Below

Connection Diagram:

Note
Specifications for reference only. 
Shaft dimension and specifications(voltage, torque, speed, etc) can be customized. 

Welcome your visit and enquiry to our factory! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Control
Casing Protection: Protection Type
Number of Poles: 4
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China best 6rk180rgucf-6gu30kg15L AC Reversible Gear Motor 104mm 180W Speed Control with Fan Ratio 30   vacuum pump	China best 6rk180rgucf-6gu30kg15L AC Reversible Gear Motor 104mm 180W Speed Control with Fan Ratio 30   vacuum pump
editor by CX 2024-03-07

China factory Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor a/c vacuum pump

Product Description

(SIEMENS) CHINAMFG Motor

Motor Summary
 

Frame size 80- 355
Pole 2-8
Rated voltage 220/380V, 380/660V
Frequency 50Hz/60Hz
Power 0.55kw-315Kw
Protection degree IP55
Cooling method IC411
Insulation class F
Ambient Temperature -20°C~40°C
Altitude not exceed 1-2012 and efficiency class IE2.
  • Optimized compact style construction.
  • Standard mounting construction according to IEC 60034-7: IM B3, IM B5, IM B35 and etc.
  • All motors are designed to IP55 degree of protection (IEC 60034-5).
  • Regreasing devices for FS280~355 as standard,and for FS100~250 as option.
  • Reinforced bearings for increased cantilever forces for FS100 ~ 355 as option.
  • Winding protections with PTC, PT100 and KTY84-130 as option.
  • Insulation system is designed for temperature class 155 (F). At rated output with line-fed operation, the motors can be used in temperature class 130 (B).
  • Environmental

      Degrees of motor protection IP55 (IEC 60034-5).
      Altitude shall not exceed 1000m above sea-level (IEC 60034-1).
      Allowed air temperature between -20 ºC and 40 ºC (IEC 60034-1).
      Permitted relative humidity:  
     -20 ºC ≤ T ≤ 20 ºC:100 %  
     20 ºC < T ≤ 30 ºC:95 %  
    30 ºC < T ≤ 40 ºC:55 %  

    Tips:
    Bearing life time (nominal lifetime)
    The bearing lifetime of motors with horizontal type of construction is at least 40,000 hours if there is no additional axial loading at the coupling output and at least 20,000 hours with the maximum admissible loads. This assumes that the motor is operated at 50Hz.
    When the motor runs outside of normal conditions, the bearing life will be reduced, such as the following conditions.

    • When 1TL0001 motor runs beyond the rated speed, the 
      increase of motor vibration will result in the extra radial and axial force on bearing. This will reduce the life of bearing;
       
    • When the motor vibration increase due to the environment or 
      other equipment, the bearing also will endure more radial and axial force. This also will reduce the life of bearing;
       
    • If the coolant temperature is increased by 10 ºC, the grease lifetime and regreasing interval is halved.

    Application fields: machine tools, water pump, blower, compressor, and transportation, print, agriculture, food and more industries.

    FAQ

    Q: What is your MOQ of this item?
    A: 5PCS.
         For the first time cooperation, we accept trial sample order.
     
    Q: What’s your payment terms?
    A: 30% T/T deposit, 70% balance before shipment or L/C at sight.
     
    Q: What’s the delivery time?
    A: 25-30 days after receiving your L/C or T/T deposit.

    Q: Can we used our own brand on motors ?
    A: Sure, we can offer OEM service,
         manufacture with your authorized brand.

    Certificate

    Office Block

     

    Team

     

     

    /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    Application: Industrial, Universal
    Operating Speed: Constant Speed
    Number of Stator: Three-Phase
    Customization:
    Available

    |

    .shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

    Shipping Cost:

    Estimated freight per unit.







    about shipping cost and estimated delivery time.
    Payment Method:







     

    Initial Payment



    Full Payment
    Currency: US$
    Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

    gear motor

    Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

    Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

    1. Heavy-Duty Industrial Applications:

    Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

    • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
    • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
    • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
    • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

    2. Smaller-Scale Uses:

    While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

    • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
    • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
    • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
    • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

    Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

    gear motor

    Can gear motors be used for precise positioning, and if so, what features enable this?

    Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

    1. Gear Reduction:

    One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

    2. High Resolution Encoders:

    Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

    3. Closed-Loop Control:

    Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

    4. Stepper Motors:

    Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

    5. Servo Motors:

    Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

    6. Motion Control Algorithms:

    Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

    By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

    gear motor

    In which industries are gear motors commonly used, and what are their primary applications?

    Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:

    1. Robotics and Automation:

    Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.

    2. Automotive Industry:

    The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.

    3. Manufacturing and Machinery:

    Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.

    4. HVAC and Building Systems:

    In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.

    5. Marine and Offshore Industry:

    Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.

    6. Renewable Energy Systems:

    The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.

    7. Medical and Healthcare:

    Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.

    These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.

    China factory Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   a/c vacuum pump		China factory Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   a/c vacuum pump
    editor by CX 2024-03-05

    China Standard 18700BTU Ultra Thin Standing Fan Coil Unit AC Motor with Wind Speed at 5th Gear Cooling and Heating with Hot selling

    Product Description

    Product Introduction
    DunAn fan coil products are divided into concealed type and surface-mounted type, where the concealed type incudes 2-rowcoil,3-row coil,3+1-row coil (4 tubes) and DC brushless motor, and the surface-mounted type includes horizontal-vertcalsurface-mounted type,cassette four-blow type, and cassette two-blow type, etc. All these products are made by high -qualityaccessories, thus featuring by advanced structure, efficient performance, low consumption and low noise, beautiful appearance,and easy to maintain.
    Horizontal Concealed Series
    · Low Noise
    The design has selected high-quality galvanized steel rotor, which transmits air in streamline form through strict dynamic andstatic balanced adjustment, so as to reduce the production of vortex airflow and airflow friction noise as well as ensure stableand quite unit operation.

    · Wide Application Scope
    To achieve the best air-conditioning effect,selectthe unit of different air volumes and enthalpydifferences according to different cold loads anddifferent using requirements. DunAn low-noisehorizontal concealed fan coil unit is speciallydesigned to meet such requirements. This seriesproduct includes 2-row coil, 3-row coil, and DC type,which can maximally meet users’ requirements andcreate the most comfort air-conditioning system.
     

    Horizontal Concealed Series

    ·Various Accessories
    According to the requirements of different air-conditioning systems,the unit provide stainlesssteel or elongated water plate, various return airbellows,FPT rubber joint,water filter,andcontrollers with various functions for selection.The unit adopts ultra-thin design,with height ofonly 235 mm,can maximally meet the siteinstallation requirements of users.
    · Reliability
    1.The thermal insulation layer thickness of wideone-time forming condensate water plate is 7mm, completely preventing from condensation;2. High-quality oil bearing is selected,withoutrequiring to fill oil.
    3. Hydrophilic aluminum fin,preventing fromcorrosion and mold, reducing wateraccumulation and improving the heat exchangeefficiency.
     

    Horizontal Concealed Series

    Model FP-34WA FP-51WA FP-68WA FP-85WA FP-102WA FP-136WA FP-170WA FP-204WA FP-238WA
    A 445 575 675 735 835 1215 1265 1515 1755
    B 472 602 702 762 862 1242 1292 1542 1782
    C Standard water plate 678 808 908 968 1068 1448 1498 1748 1988
    Elongated water plate 928 1058 1158 1218 1318 1698 1748 1998 2238
    D Standard water plate 50 50 50 50 50 50 50 50 50
    Elongated water plate 300 300 300 300 300 300 300 300 300
    E 48 48 48 48 48 48 48 48 48

    Horizontal Concealed Series
    1.High-efficiency dust removal: Purification efficiency of PM2.5 particles is ≥91%;
    2.Comprehensive sterilization:Killing rate of various viruses is ≥ 99%; removal rate of harmful rate is ≥ 95%;
    3.Free selection: Users can choose dust removal type(JDX), sterilization type (CHX) and composite type (dust removal +sterilization)(FHX) according to requirements;
    4.Long-lasting energy saving: Small air resistance (≤20Pa), with the service life of more than 10 years;
    5. Safe and simple: Single functional section, can be installed at the return air inlet of fan coil or in the return air ductindependently.
    Surface-mounted Series

    Note:
    Elegant appearance: Beautiful view
    Saving space: Maximum thickness of 250mm
    The standard control mode is three-speed switch control,with remote control and wire control optional
    The vertical surface mounted type has up-air outlet type only
    The horizontal surface mounted type has down-return air and front air outlet type only
    Judgment criteria for left and right type of unit: Facing the return air inlet,if the connecting pipe is on the left, it is left type; other wise, it is right type;
     

    Model FP-51 FP-68 FP-85 FP-102 FP-136 FP-170 FP-204
    Rated air volume
    (mh)
    H 510 680 850 1571 1360 1700 2040
    M 384 510 638 765 1571 1275 1530
    L 258 340 425 510 680 850 1571
    Refrigerating capacity (W) H 2680 3640 4480 5350 7180 8950 10600
    M 2270 3571 3770 4530 6040 7515 8350
    L 1650 2170 2710 3250 4340 5420 6050
    Heating capacity (W) H 4050 5400 6750 8100 10800 13500 16200
    M 3240 4290 5370 6430 8580 10720 13380
    L 2260 3000 3710 4450 5950 7450 9580
    Power (W) H 51 62 71 94 124 152 188
    Noise (dB(A)) H 39 41 43 45 46 48 50
    Power supply 220-240V/1P/50Hz
    Coll working pressure 1.6MPa
    Inlet/outlet water pipe joint Rc3/4 (internal thread)
    Condensate water Joint cp20mm
    Water ftow (Kg /h) H 520 700 876 1050 1400 1750 1990
    Water resistance (Kpa) H 5.9 11.9 19.7 31.9 37.8 24.2 29.4
    Weight (Kg) 19 21 22 27 39 47 49

     Cassette Double-blow Fan Coil

    Note:
    Km2 indicates cassette double-blow type unit;
    Suitable for long and narrow space,such as corridor or long andnarrow living room or dining room; two-way air outlet design,guaranteeing uniform air flow;
    No left/right type division of unit;
    Equipped with condensate water lift pump (with lift of 700 mm) andremote control.
     

    Model FP-34KM4 FP-51KM4 FP-68KM4 FP-85KM4 FP-102KM4 FP-136KM4 FP-170KM4 FP-204KM4 FP-238KM4
    Rated air volume m’ /h 340 510 680 850 1571 1360 1700 2040 2380
    Refrigeatin g capacity (W) 1800 2700 3600 4500 5400 7200 9000 10800 12150
    Heating capacity (W) 2 7 00 4050 5400 6750 8100 10800 13500 16200 17500
    Piping size Inlet/outlet water pipe Rc3 /4(DN20)
    Condensate
    pipe
    <ll20
    W a t er  flow (kg/h) 350 520 700 860 1050 1400 1750 1990 2320
    Wateres1stance  kpa 30 30 30 30 40 40 40 40 50
    Input power W 37 52 62 76 96 134 152 189 228
    Noise dB (A) 3 7 ,,;;39 41 43 ,s;:;45 46 48 5 0 52
    Connection type Internal thread connection
    Power supply       1/N/PE/AC 220V 50HZ      
    Unit net
    weight (kg)
    Type 290 23 23 23 34 34 34 48 48 48
    Type 390 23 23 23 34 34 34 48 48 48
    Working pessure (Mpa) 16
    Overall dimensions A*B 650 *650 650 *650 650 *650 850 *850 850 *850 850 *850 1050 *1050 1050 *1050 1050 *1050
    L*S 570 *570 570 *570 570 *570 730 *730 730 *730 730 *730 930 *930 930 *930 930 *930
    K*H 280 *616 280 *616 280 *616 440*77 6 440 *77 6 440 *77 6 640 *976 640 *976 640 *976

    Optional Accessories

    – The accurate address of the building
     

    – The application of the building

    – The size of the building, such as the height of each floor?

    – The drawing of the building

    – The environment condition of the building, such as highest temperature in summer

    – The working condition of the outdoor units

    – The function of each room

    – Which rooms need indoor units

    – Is it an old building or new building

    – If it is still not decorated

    – Which kind of indoor units do you prefer according to the catalog

    – What is the local power supply for your building

    Customisation process
    /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

    After-sales Service: Repair and Maintenance Services Available
    Warranty: 5years
    Type: Fan Coil Unit
    Air Tube Material: Plastics
    Corrosion Durability: Ultrahigh
    Operating Voltage: 230 VAC
    Samples:
    US$ 190/Piece
    1 Piece(Min.Order)

    |

    Customization:
    Available

    |

    gear motor

    Are gear motors suitable for both heavy-duty industrial applications and smaller-scale uses?

    Yes, gear motors are suitable for both heavy-duty industrial applications and smaller-scale uses. Their versatility and ability to provide torque multiplication make them valuable in a wide range of applications. Here’s a detailed explanation of why gear motors are suitable for both types of applications:

    1. Heavy-Duty Industrial Applications:

    Gear motors are commonly used in heavy-duty industrial applications due to their robustness and ability to handle high loads. Here are the reasons why they are suitable for such applications:

    • Torque Multiplication: Gear motors are designed to provide high torque output, making them ideal for applications that require substantial force to move or operate heavy machinery, conveyors, or equipment.
    • Load Handling: Industrial settings often involve heavy loads and demanding operating conditions. Gear motors, with their ability to handle high loads, are well-suited for tasks such as lifting, pulling, pushing, or driving heavy materials or equipment.
    • Durability: Heavy-duty industrial applications require components that can withstand harsh environments, frequent use, and demanding operating conditions. Gear motors are typically constructed with durable materials and designed to withstand heavy vibrations, shock loads, and temperature variations.
    • Speed Reduction: Many industrial processes require the reduction of motor speed to achieve the desired output speed. Gear motors offer precise speed reduction capabilities through gear ratios, allowing for optimal control and operation of machinery and equipment.

    2. Smaller-Scale Uses:

    While gear motors excel in heavy-duty industrial applications, they are also suitable for smaller-scale uses across various industries and applications. Here’s why gear motors are well-suited for smaller-scale uses:

    • Compact Size: Gear motors are available in compact sizes, making them suitable for applications with limited space or small-scale machinery, devices, or appliances.
    • Torque and Power Control: Even in smaller-scale applications, there may be a need for torque multiplication or precise power control. Gear motors can provide the necessary torque and power output for tasks such as precise positioning, controlling speed, or driving small loads.
    • Versatility: Gear motors come in various configurations, such as parallel shaft, planetary, or worm gear designs, offering flexibility to match specific requirements. They can be adapted to different applications, including robotics, medical devices, automotive systems, home automation, and more.
    • Efficiency: Gear motors are designed to be efficient, converting the electrical input power into mechanical output power with minimal losses. This efficiency is advantageous for smaller-scale applications where energy conservation and battery life are critical.

    Overall, gear motors are highly versatile and suitable for both heavy-duty industrial applications and smaller-scale uses. Their ability to provide torque multiplication, handle high loads, offer precise speed control, and accommodate various sizes and configurations makes them a reliable choice in a wide range of applications. Whether it’s powering large industrial machinery or driving small-scale automation systems, gear motors provide the necessary torque, control, and durability required for efficient operation.

    gear motor

    Are there environmental benefits to using gear motors in certain applications?

    Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

    1. Energy Efficiency:

    Gear motors can improve energy efficiency in various ways:

    • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
    • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

    2. Reduced Resource Consumption:

    The use of gear motors can lead to reduced resource consumption and environmental impact:

    • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
    • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

    3. Noise Reduction:

    Gear motors can contribute to a quieter and more environmentally friendly working environment:

    • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

    4. Precision and Control:

    Gear motors offer enhanced precision and control, which can lead to environmental benefits:

    • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
    • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

    In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

    gear motor

    Can you explain the advantages of using gear motors in various mechanical systems?

    Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

    1. Torque Amplification:

    One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

    2. Speed Control:

    Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

    3. Directional Control:

    Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

    4. Efficiency and Power Transmission:

    Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

    5. Compact and Space-Saving Design:

    Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

    6. Durability and Reliability:

    Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

    By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

    China Standard 18700BTU Ultra Thin Standing Fan Coil Unit AC Motor with Wind Speed at 5th Gear Cooling and Heating   with Hot selling	China Standard 18700BTU Ultra Thin Standing Fan Coil Unit AC Motor with Wind Speed at 5th Gear Cooling and Heating   with Hot selling
    editor by CX 2024-02-25

    China wholesaler CE Approved 0.18kw-15kw Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower vacuum pump distributors

    Product Description

    Ce Approved 0.18kw-15kw Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower

    Product Description

    1. Light in weight and non-rusting.
    2. Smooth in running, can work a long time in dreadful conditions.
    3. High efficiency, low noise.
    4. Good-looking in appearance, durable in service life, and small in volume.

    Detailed Photos

     

     

    Product Parameters

     

    Stainless Steel Motor Power 1/4HP~30HP
    Frame Size IEC 63 ~ 180 B5 B14, NEMA 56 ~ 286TC
    Motor Phase Single or Three
    Voltage (208-230)230/460V
    Poles 2, 4, 6, 8 poles
    Protection Class IP69K
    Cooling method TENV or TEFC
    Mounting Type B14, B3, B5, B35, B34
    Ambient Temperature -15 ~ +40 °C
    Altitude ≤1000M
    Material Stainless steel 304

     

    Stainless Steel Gearbox Model 030 ~ 090
    Power 0.06kw ~ 4kw
    Input speed 750rpm ~ 2000rpm
    Reduction ratio 1/5 ~ 1/100
    Input motor AC (1 phase or 3 phase) / DC / BLDC / Stepper / Servo
    Output shaft Solid shaft / Hollow shaft / Output flange…
    Dimension standard Metric size / Inch size
    Material of housing Stainless steel 304
    Accessories Flange / CHINAMFG shaft / Torque arm / Cover …

     

    Typical applications

    Company Profile

    Certifications

     

    FAQ

    Q: Can you make the stainless steel motor with customization?
    A: Yes, we can customize per your request, like flange, shaft, configuration, material, etc.

    Q: Do you provide samples?
    A: Yes. A sample is available for testing.

    Q: What’s your lead time?
    A: Standard products need 5-30days, a bit longer for customized products.

    Q: Do you provide technical support?
    A: Yes. Our company have design and development team, we can provide technical support if you
    need.

    Q: How to ship to us?
    A: It is available by air, or by sea, or by train.

    Q: How to pay the money?
    A: T/T and L/C are preferred, with a different currency, including USD, EUR, RMB, etc.

    Q: How can I know the product is suitable for me?
    A: >1ST confirm drawing and specification >2nd test sample >3rd start mass production.

    Q: Can I come to your company to visit?
    A: Yes, you are welcome to visit us at any time.

    Q: How shall we contact you?
    A: You can send an inquiry directly, and we will respond within 24 hours.

    Application: Food Machine
    Speed: Constant Speed
    Number of Stator: Single or Three Phase
    Samples:
    US$ 50/Piece
    1 Piece(Min.Order)

    |

    Order Sample

    1 pc per carton
    Customization:
    Available

    |

    .shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

    Shipping Cost:

    Estimated freight per unit.







    about shipping cost and estimated delivery time.
    Payment Method:







     

    Initial Payment



    Full Payment
    Currency: US$
    Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

    gear motor

    Where can individuals find reliable resources for learning more about gear motors and their applications?

    Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

    1. Manufacturer Websites:

    Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

    2. Industry Associations and Organizations:

    Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

    3. Technical Publications and Journals:

    Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

    4. Online Forums and Communities:

    Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

    5. Educational Institutions and Courses:

    Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

    6. Trade Shows and Exhibitions:

    Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

    When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

    gear motor

    What is the significance of gear reduction in gear motors, and how does it affect efficiency?

    Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

    Significance of Gear Reduction:

    1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

    2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

    3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

    Effect on Efficiency:

    While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

    1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

    2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

    It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

    In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

    gear motor

    In which industries are gear motors commonly used, and what are their primary applications?

    Gear motors find widespread use in various industries due to their versatility, reliability, and ability to provide controlled mechanical power. They are employed in a wide range of applications that require precise power transmission and speed control. Here’s a detailed explanation of the industries where gear motors are commonly used and their primary applications:

    1. Robotics and Automation:

    Gear motors play a crucial role in robotics and automation industries. They are used in robotic arms, conveyor systems, automated assembly lines, and other robotic applications. Gear motors provide the required torque, speed control, and directional control necessary for the precise movements and operations of robots. They enable accurate positioning, gripping, and manipulation tasks in industrial and commercial automation settings.

    2. Automotive Industry:

    The automotive industry extensively utilizes gear motors in various applications. They are used in power windows, windshield wipers, HVAC systems, seat adjustment mechanisms, and many other automotive components. Gear motors provide the necessary torque and speed control for these systems, enabling smooth and efficient operation. Additionally, gear motors are also utilized in electric and hybrid vehicles for powertrain applications.

    3. Manufacturing and Machinery:

    Gear motors find wide application in the manufacturing and machinery sector. They are used in conveyor belts, packaging equipment, material handling systems, industrial mixers, and other machinery. Gear motors provide reliable power transmission, precise speed control, and torque amplification, ensuring efficient and synchronized operation of various manufacturing processes and machinery.

    4. HVAC and Building Systems:

    In heating, ventilation, and air conditioning (HVAC) systems, gear motors are commonly used in damper actuators, control valves, and fan systems. They enable precise control of airflow, temperature, and pressure, contributing to energy efficiency and comfort in buildings. Gear motors also find applications in automatic doors, blinds, and gate systems, providing reliable and controlled movement.

    5. Marine and Offshore Industry:

    Gear motors are extensively used in the marine and offshore industry, particularly in propulsion systems, winches, and cranes. They provide the required torque and speed control for various marine operations, including steering, anchor handling, cargo handling, and positioning equipment. Gear motors in marine applications are designed to withstand harsh environments and provide reliable performance under demanding conditions.

    6. Renewable Energy Systems:

    The renewable energy sector, including wind turbines and solar tracking systems, relies on gear motors for efficient power generation. Gear motors are used to adjust the rotor angle and position in wind turbines, optimizing their performance in different wind conditions. In solar tracking systems, gear motors enable the precise movement and alignment of solar panels to maximize sunlight capture and energy production.

    7. Medical and Healthcare:

    Gear motors have applications in the medical and healthcare industry, including in medical equipment, laboratory devices, and patient care systems. They are used in devices such as infusion pumps, ventilators, surgical robots, and diagnostic equipment. Gear motors provide precise control and smooth operation, ensuring accurate dosing, controlled movements, and reliable functionality in critical medical applications.

    These are just a few examples of the industries where gear motors are commonly used. Their versatility and ability to provide controlled mechanical power make them indispensable in numerous applications requiring torque amplification, speed control, directional control, and load distribution. The reliable and efficient power transmission offered by gear motors contributes to the smooth and precise operation of machinery and systems in various industries.

    China wholesaler CE Approved 0.18kw-15kw Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump distributorsChina wholesaler CE Approved 0.18kw-15kw Three Phase Asynchronous Electric Motor AC Motor Induction Motor for Water Pump, Air Compressor, Gear Reducer Fan Blower   vacuum pump distributors
    editor by CX 2023-12-07

    China Hot selling Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Long Life Pump Fan Chain Grinder vacuum pump belt

    Product Description

     

    Product Description

     

    model Number of poles Phase Rated voltage Rated speed Continuous locked-rotor torque Rated torque Rated power Peak torque
    Units     VDC RPM N.m N.m W N.m
    42BYA075B030C-02 4 3 24 3000 0.192 0.16 50 0.48

     

    model Peak current Torque constant Back EMF Motor length Motor length voltage range Range of rotation weight
    Units A Nm/A V/KRPM g.cMoment of inertia mm VDC RPM Kg
    42BYA075B030C-02 9.6 0.05 3.947 14.6 134 24~48 1000~3000 1.0 

    Product Parameters

    Quiet stable and reliable for long life operation

    1.Voltage: 24 VDC
    2.Number of phases: 3
    3.Number of levels: 4
    4.Line-to-line resistance: 1.45±10%ohms
    5.Line-to-line inductance: 1.27±20%mH
    6.Rated current: 3.2A
    7.Rated power: 50W
    8.No-load speed: 4300 rpm
    9.Insulation class: B
    10.Reduction ratio: 1:58.22
    11.Output torque: 7.5 N.m
    12.Output speed: 51.5 rpm
    13.We can design the special voltage and shaft and so on

    Jintian Imp. & Exp Co. Ltd opened in 2008 to facilitate international trade between China and the rest of the world. The young firm grew quickly, gaining a reputation for integrity, efficiency and astute knowledge of local market.

    Throughout its 10 more years history, CHINAMFG has sought to connect customers with opportunities. While that purpose has remained unchanged, CHINAMFG has succeeded by positioning itself where the growth is and by aligning itself to the major economic trends of the time.

    After being funded in ZheJiang , China to facilitate local and international trade, CHINAMFG expanded rapidly to capture the increasing flow of commerce between Asia, Europe and North America. Since then, CHINAMFG has continued to grow in line with changing trade patterns and developing markets, pioneering modern international trade practices in many countries. Built over 10 years, this global network is highly distinctive, difficult to replicate and ideally positioned for the world’s top trade corridors.

    Our ability to connect customers remains absolutely central to the company’s strategy today, which aims to establish CHINAMFG as the world”s leading international trade company. Above all, we remain dedicated to the purpose that CHINAMFG was founded to serve: Connecting customers to opportunities, enabling businesses to CHINAMFG and economies to prosper, and helping people to fulfill their hopes and dreams.

    Application: Industrial
    Speed: High Speed
    Number of Stator: Three-Phase
    Function: Driving, Control
    Casing Protection: Protection Type
    Number of Poles: 8
    Samples:
    US$ 162/Piece
    1 Piece(Min.Order)

    |

    Customization:
    Available

    |

    gear motor

    Where can individuals find reliable resources for learning more about gear motors and their applications?

    Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

    1. Manufacturer Websites:

    Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

    2. Industry Associations and Organizations:

    Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

    3. Technical Publications and Journals:

    Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

    4. Online Forums and Communities:

    Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

    5. Educational Institutions and Courses:

    Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

    6. Trade Shows and Exhibitions:

    Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

    When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

    gear motor

    What is the significance of gear reduction in gear motors, and how does it affect efficiency?

    Gear reduction plays a significant role in gear motors as it enables the motor to deliver higher torque while reducing the output speed. This feature has several important implications for gear motors, including enhanced power transmission, improved control, and potential trade-offs in terms of efficiency. Here’s a detailed explanation of the significance of gear reduction in gear motors and its effect on efficiency:

    Significance of Gear Reduction:

    1. Increased Torque: Gear reduction allows gear motors to generate higher torque output compared to a motor without gears. By reducing the rotational speed at the output shaft, gear reduction increases the mechanical advantage of the system. This increased torque is beneficial in applications that require high torque to overcome resistance, such as lifting heavy loads or driving machinery with high inertia.

    2. Improved Control: Gear reduction enhances the control and precision of gear motors. By reducing the speed, gear reduction allows for finer control over the motor’s rotational movement. This is particularly important in applications that require precise positioning or accurate speed control. The gear reduction mechanism enables gear motors to achieve smoother and more controlled movements, reducing the risk of overshooting or undershooting the desired position.

    3. Load Matching: Gear reduction helps match the motor’s power characteristics to the load requirements. Different applications have varying torque and speed requirements. Gear reduction allows the gear motor to achieve a better match between the motor’s power output and the specific requirements of the load. It enables the motor to operate closer to its peak efficiency by optimizing the torque-speed trade-off.

    Effect on Efficiency:

    While gear reduction offers several advantages, it can also affect the efficiency of gear motors. Here’s how gear reduction impacts efficiency:

    1. Mechanical Efficiency: The gear reduction process introduces mechanical components such as gears, bearings, and lubrication systems. These components introduce additional friction and mechanical losses into the system. As a result, some energy is lost in the form of heat during the gear reduction process. The efficiency of the gear motor is influenced by the quality of the gears, the lubrication used, and the overall design of the gear system. Well-designed and properly maintained gear systems can minimize these losses and optimize mechanical efficiency.

    2. System Efficiency: Gear reduction affects the overall system efficiency by impacting the motor’s electrical efficiency. In gear motors, the motor typically operates at higher speeds and lower torques compared to a direct-drive motor. The overall system efficiency takes into account both the electrical efficiency of the motor and the mechanical efficiency of the gear system. While gear reduction can increase the torque output, it also introduces additional losses due to increased mechanical complexity. Therefore, the overall system efficiency may be lower compared to a direct-drive motor for certain applications.

    It’s important to note that the efficiency of gear motors is influenced by various factors beyond gear reduction, such as motor design, control systems, and operating conditions. The selection of high-quality gears, proper lubrication, and regular maintenance can help minimize losses and improve efficiency. Additionally, advancements in gear technology, such as the use of precision gears and improved lubricants, can contribute to higher overall efficiency in gear motors.

    In summary, gear reduction is significant in gear motors as it provides increased torque, improved control, and better load matching. However, gear reduction can introduce mechanical losses and affect the overall efficiency of the system. Proper design, maintenance, and consideration of application requirements are essential to optimize the balance between torque, speed, and efficiency in gear motors.

    gear motor

    Are there specific considerations for selecting the right gear motor for a particular application?

    When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

    1. Torque Requirement:

    The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

    2. Speed Requirement:

    Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

    3. Duty Cycle:

    Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

    4. Environmental Factors:

    Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

    5. Efficiency and Power Requirements:

    Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

    6. Physical Constraints:

    Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

    7. Noise and Vibration:

    Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

    By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

    China Hot selling Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Long Life Pump Fan Chain Grinder   vacuum pump belt	China Hot selling Variable Speed High Power Electric Car Brushless DC Planetary Gear Servo Motor for Long Life Pump Fan Chain Grinder   vacuum pump belt
    editor by CX 2023-11-18

    China Hot selling Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor with Hot selling

    Product Description

    Production Description

    YE2 Series Cast of Iron Three Phase Induction Motor is specially designed for European market, whose terminal box is located on
    the top of motor.They are totally enclosed and fan-cooling designed. They are newly designed in conformity with the relevant
    requirements / rules of IEC&DIN42673 standards.
     

    Type
     
    YE2 
    Power
     
    0.75~315kw
    Insulation
     
    F / B, H/B
    Voltage and frequency
     
    380/400/415/660/690V  50/60hz
    Speed
     
    3000/1500/1000/750/600 rpm
    Mounitng
     
    IMB3/IMV1
    Cooling and ventilation
     
    TEFC in accordance with IC411 of IEC60034-6.
    Winding
     
    100% Cooper Wire
    Protection class
     
    IP54/IP55
    Vibration
     
    vibration class A, vibration class B is available on request.
    Quality assurance
     
    ISO9001
    Site conditions
     
     from -15°C t0 +40°C and altitude below 1000 meters

    Products Application, Value Added Service

    PinnxunMotor can provide a complete set of optimal solutions for various Applications,Bring innovation and valueadded to our 
    customers, At the same time, we can also formulate special solutions according to the different needed of customer 

    Product  Process
     
    Pinnxun always take good faith, responsibility, carefulness and CHINAMFG as our management philosophy, committedto providing
    customers with superior quality products,every step in processs must be take full attention.

    Qualification certification system

    The key for ‘Pinxing’ long-terms cooperation is to continuously improve the quality of is products and service, By virtue of is
    comprehensive process, quality management system and strict compliance with international mainstream standards.’Pinxing’
    has established a quality management system that has passed ISO9001-2008 Quality management system certification

    ISO14001 Environmental management system.
    ISO9001-2008 Quality management system
    ISO14001 Environmental management system
    CE European Certification
    IECEX CHINAMFG Ex Certification for Ex motors
    ATEX European Ex Certification for Ex motors
    EAC Russia GOST standard Ex certification for Ex motors
    CQC China quality center energy conservation certification

    Worldwide Marketing & Service Network 

    Global Perfect Marketing service network is 1 of Pinxing’s advantage. we have 38 branches in china main city,5 branches in
    the Abroad ,Our business penetrates more than 60 countries and regions including South America, North America,Europe, Asia
    Middle East and Africa, Giving us rapid reach capacity from sales, service, procurement and Transportation since inception, Pinxing
    always uphold the development strategy of market globalization. we segment and position customers needs and target market. our
    products and service are widely used in global industry, and performance stable and safety.we custom different motors for different
    industries

     

    Application: Industrial,Universal,Power Tool
    Speed: High Speed
    Number of Stator: Three-Phase
    Function: Driving
    Casing Protection: Protection Type
    Number of Poles: 2/4/6/8/10/12 Pole
    Customization:
    Available

    |

    China Hot selling Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   with Hot selling	China Hot selling Three Phase Asynchronous AC Induction Electric Gear Reducer Fan Blower Vacuum Air Compressor Water Pump Universal Industry Machine Motor   with Hot selling
    editor by CX 2023-10-19